Resonance frequency analysis

Indian J Dent Res. 2011 Jul-Aug;22(4):567-73. doi: 10.4103/0970-9290.90300.

Abstract

Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA) is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized, prospective longitudinal studies are certainly needed to establish threshold ranges for implant stability and for implants at risk for losing stability for different implant system.

Publication types

  • Review

MeSH terms

  • Bone Density / physiology
  • Dental Implantation, Endosseous / methods
  • Dental Implants*
  • Dental Prosthesis Retention*
  • Elastic Modulus
  • Humans
  • Osseointegration / physiology
  • Vibration

Substances

  • Dental Implants