Fluorine-fluorine interactions in the solid state: an experimental and theoretical study

J Phys Chem A. 2012 Feb 9;116(5):1435-44. doi: 10.1021/jp2099976. Epub 2011 Dec 12.

Abstract

The solid state structures of three compounds that contain a perfluorinated chain, CF(3)(CF(2))(5)CH(2)CH(CH(3))CO(2)H, CF(3)(CF(2))(5)(CH(2))(4)(CF(2))(5)CF(3) and {CF(3)(CF(2))(5)CH(2)CH(2)}(3)P═O have been compared and a number of C-F···F-C and C-F···H-C interactions that are closer than the sum of the van der Waals radii have been identified. These interactions have been probed by a comprehensive computational chemistry investigation and the stabilizing energy between dimeric fragments was found to be 0.26-29.64 kcal/mol, depending on the type of interaction. An Atoms-in-Molecules (AIM) study has confirmed that specific C-F···F-C interactions are indeed present, and are not due simply to crystal packing. The weakly stabilizing nature of these interactions has been utilized in the physisorption of a selected number of compounds containing long chain perfluorinated ponytails onto a perfluorinated self-assembled monolayer, which has been characterized by IRRAS (Infrared Reflection Absorption Spectroscopy).