Cross-functional E3 ligases Parkin and C-terminus Hsp70-interacting protein in neurodegenerative disorders

J Neurochem. 2012 Feb;120(3):350-70. doi: 10.1111/j.1471-4159.2011.07588.x. Epub 2011 Dec 21.

Abstract

The study of neurodegenerative disorders has had a major impact on our understanding of more fundamental mechanisms underlying neurobiology. Breakthroughs in the genetics of Alzheimer's (AD) and Parkinson's diseases (PD) has resulted in new knowledge in the areas of axonal transport, energy metabolism, protein trafficking/clearance and synaptic physiology. The major neurodegenerative diseases have in common a regional or network pathology associated with abnormal protein accumulation(s) and various degrees of motor or cognitive decline. In AD, β-amyloids are deposited in extracellular diffuse and compacted plaques as well as intracellularly. There is a major contribution to the disease by the co-existence of an intraneuronal tauopathy. Additionally, PD-like Lewy Bodies (LBs) bearing aggregated α-synuclein is present in 40-60% of all AD cases, especially involving amygdala. Amyloid deposits can be degraded or cleared by several mechanisms, including immune-mediated and transcytosis across the blood-brain barrier. Another avenue for disposal involves the lysosome pathway via autophagy. Enzymatic pathways include insulin degradative enzyme and neprilysin. Finally, the co-operative actions of C-terminus Hsp70 interacting protein (CHIP) and Parkin, components of a multiprotein E3 ubiquitin ligase complex, may be a portal to proteasome-mediated degradation. Mutations in the Parkin gene are the most common genetic link to autosomal recessive Parkinson's disease. Parkin catalyzes the post-translational modification of proteins with polyubiquitin, targeting them to the 26S proteasome. Parkin reduces intracellular Aβ(1-42) peptide levels, counteracts its effects on cell death, and reverses its effect to inhibit the proteasome. Additionally, Parkin has intrinsic cytoprotective activity to promote proteasome function and defend against oxidative stress to mitochondria. Parkin and CHIP are also active in amyloid clearance and cytoprotection in vivo. Parkin has cross-functionality in additional neurodegenerative diseases, for instance, to eliminate polyglutamine-expanded proteins, reducing their aggregation and toxicity and reinstate proteasome function. The dual actions of CHIP (molecular co-chaperone and E3 ligase) and Parkin (as E3-ubiquitin ligase and anti-oxidant) may also play a role in suppressing inflammatory reactions in animal models of neurodegeneration. In this review, we focus on the significance of CHIP and Parkin as inducers of amyloid clearance, as cytoprotectants and in the suppression of reactive inflammation. A case is made for more effort to explore whether neurodegeneration associated with proteinopathies can be arrested at early stages by promoting their mutual action.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amyloid beta-Peptides / metabolism
  • Animals
  • Humans
  • Models, Biological
  • Neurodegenerative Diseases / metabolism*
  • Ubiquitin-Protein Ligase Complexes / metabolism
  • Ubiquitin-Protein Ligases / metabolism*

Substances

  • Amyloid beta-Peptides
  • Ubiquitin-Protein Ligase Complexes
  • STUB1 protein, human
  • Ubiquitin-Protein Ligases
  • parkin protein