2,2'-Dithiobis(5-nitropyridine) (DTNP) as an effective and gentle deprotectant for common cysteine protecting groups

J Pept Sci. 2012 Jan;18(1):1-9. doi: 10.1002/psc.1403. Epub 2011 Nov 14.

Abstract

Of all the commercially available amino acid derivatives for solid phase peptide synthesis, none has a greater abundance of side-chain protection diversity than cysteine. The high reactivity of the cysteine thiol necessitates its attenuation during peptide construction. Moreover, the propensity of cysteine residues within a peptide or protein sequence to form disulfide connectivity allows the opportunity for the peptide chemist to install these disulfides iteratively as a post-synthetic manipulation through the judicious placement of orthogonal pairs of cysteine S-protection within the peptide's architecture. It is important to continuously discover new vectors of deprotection for these different blocking protocols in order to achieve the highest degree of orthogonality between the removal of one species in the presence of another. We report here a complete investigation of the scope and limitations of the deprotective potential of 2,2'-dithiobis(5-nitropyridine) (DTNP) on a selection of commercially available Cys S-protecting groups. The gentle conditions of DTNP in a TFA solvent system show a remarkable ability to deprotect some cysteine blocking functionality traditionally removable only by more harsh or forcing conditions. Beyond illustrating the deprotective ability of this reagent cocktail within a cysteine-containing peptide sequence, the utility of this method was further demonstrated through iterative disulfide formation in oxytocin and apamin test peptides. It is shown that this methodology has high potential as a stand-alone cysteine deprotection technique or in further manipulation of disulfide architecture within a more complex cysteine-containing peptide template.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence
  • Apamin / chemical synthesis*
  • Chromatography, High Pressure Liquid
  • Cysteine / chemistry*
  • Disulfides / chemistry
  • Mass Spectrometry
  • Molecular Sequence Data
  • Oxytocin / chemical synthesis*
  • Peptides / chemical synthesis*
  • Pyridines / chemistry*
  • Solid-Phase Synthesis Techniques / methods*
  • Trifluoroacetic Acid / chemistry

Substances

  • Disulfides
  • Peptides
  • Pyridines
  • 2,2'-dithiobis(5-nitropyridine)
  • Apamin
  • Oxytocin
  • Trifluoroacetic Acid
  • Cysteine