The dynamic range of human lightness perception

Curr Biol. 2011 Nov 22;21(22):1931-6. doi: 10.1016/j.cub.2011.10.013. Epub 2011 Nov 10.

Abstract

Natural viewing challenges the visual system with images that have a dynamic range of light intensity (luminance) that can approach 1,000,000:1 and that often exceeds 10,000:1 [1, 2]. The range of perceived surface reflectance (lightness), however, can be well approximated by the Munsell matte neutral scale (N 2.0/ to N 9.5/), consisting of surfaces whose reflectance varies by about 30:1. Thus, the visual system must map a large range of surface luminance onto a much smaller range of surface lightness. We measured this mapping in images with a dynamic range close to that of natural images. We studied simple images that lacked segmentation cues that would indicate multiple regions of illumination. We found a remarkable degree of compression: at a single image location, a stimulus luminance range of 5,905:1 can be mapped onto an extended lightness scale that has a reflectance range of 100:1. We characterized how the luminance-to-lightness mapping changes with stimulus context. Our data rule out theories that predict perceived lightness from luminance ratios or Weber contrast. A mechanistic model connects our data to theories of adaptation and provides insight about how the underlying visual response varies with context.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Contrast Sensitivity*
  • Cues
  • Humans
  • Light*
  • Lighting
  • Models, Neurological
  • Pattern Recognition, Visual
  • Photic Stimulation
  • Vision, Ocular
  • Visual Perception*