Lanthanide polyoxocationic complexes: experimental and theoretical stability studies and Lewis acid catalysis

Chemistry. 2011 Dec 9;17(50):14129-38. doi: 10.1002/chem.201101754. Epub 2011 Nov 10.

Abstract

The [ε-PMo(V)(8)Mo(VI)(4)O(36)(OH)(4){Ln(III)(H(2)O)}(4)](5+) (Ln=La, Ce, Nd, Sm) polyoxocations, called εLn(4), have been synthesized at room temperature as chloride salts soluble in water, MeOH, EtOH, and DMF. Rare-earth metals can be exchanged, and (31)P NMR spectroscopic studies have allowed a comparison of the affinity of the reduced {ε-PMo(12)} core, thus showing that the La(III) ions have the highest affinity and that rare earths heavier than Eu(III) do not react with the ε-Keggin polyoxometalate. DFT calculations provide a deeper insight into the geometries of the systems studied, thereby giving more accurate information on those compounds that suffer from disorder in crystalline form. It has also been confirmed by the hypothetical La→Gd substitution reaction energy that Ln ions beyond Eu cannot compete with La in coordinating the surface of the ε-Keggin molybdate. Two of these clusters (Ln=La, Ce) have been tested to evidence that such systems are representative of a new efficient Lewis acid catalyst family. This is the first time that the catalytic activity of polyoxocations has been evaluated.