Order-disorder transition in supramolecular polymers

J Am Chem Soc. 2011 Dec 14;133(49):19672-5. doi: 10.1021/ja209126a. Epub 2011 Nov 17.

Abstract

In supramolecular polymers, directional interactions control the constituting units connectivity, but dispersion forces may conspire to make complex organizations. Here we report on the long-range order and order-disorder transition (ODT) of main-chain supramolecular polymers based on poly(propylene oxide) (PPO) spacers functionalized on both ends with thymine. Below the ODT temperature (T(ODT)), these compounds are semicrystalline with a lamellar structure, showing nanophase separation between crystallized thymine planes and amorphous PPO layers. Above T(ODT), they are amorphous and homogeneous even though their X-ray scattering spectrum reveals a peak. This peak is due to correlation hole effect resulting from contrast between end-functional groups and spacer. Macroscopically, the transition is accompanied by dramatic flow and mechanical properties changes.