Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus

J Neurosci Res. 2012 Mar;90(3):551-8. doi: 10.1002/jnr.22787. Epub 2011 Nov 4.

Abstract

Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus.

MeSH terms

  • 2-Amino-5-phosphonovalerate / pharmacology
  • Age Factors
  • Animals
  • CA1 Region, Hippocampal / drug effects*
  • CA1 Region, Hippocampal / physiology
  • Chlorides / pharmacology*
  • Excitatory Amino Acid Antagonists / pharmacology*
  • Excitatory Postsynaptic Potentials / drug effects
  • Excitatory Postsynaptic Potentials / physiology
  • Long-Term Potentiation / drug effects*
  • Long-Term Potentiation / physiology
  • Male
  • Rats
  • Rats, Wistar
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Synapses / drug effects
  • Synapses / physiology
  • Zinc Compounds / pharmacology*

Substances

  • Chlorides
  • Excitatory Amino Acid Antagonists
  • Receptors, N-Methyl-D-Aspartate
  • Zinc Compounds
  • 2-Amino-5-phosphonovalerate
  • zinc chloride