Products of SO2 adsorption on fuel cell electrocatalysts by combination of sulfur K-edge XANES and electrochemistry

Langmuir. 2011 Dec 20;27(24):14930-9. doi: 10.1021/la2033466. Epub 2011 Nov 21.

Abstract

Electrochemical adsorption of SO(2) on platinum is complicated by the change in sulfur oxidation state with potential. Here, we attempt to identify SO(2) adsorption products on catalyst coated membranes (CCMs) at different electrode potentials using a combination of in situ sulfur K-edge XANES (X-ray absorption near-edge structure) spectroscopy and electrochemical techniques. CCMs employed platinum nanoparticles supported on Vulcan carbon (Pt/VC). SO(2) was adsorbed from a SO(2)/N(2) gas mixture while holding the Pt/VC-electrode potential at 0.1, 0.5, 0.7, and 0.9 V vs a reversible hydrogen electrode (RHE). Sulfur adatoms (S(0)) are identified as the SO(2) adsorption products at 0.1 V, while mixtures of S(0), SO(2), and sulfate/bisulfate ((bi)sulfate) ions are suggested as SO(2) adsorption products at 0.5 and 0.7 V. At 0.9 V, SO(2) is completely oxidized to (bi)sulfate ions. The identity of adsorbed SO(2) species on Pt/VC catalysts at different electrode potentials is confirmed by modeling of XANES spectra using FEFF8 and a linear combination of experimental spectra from sulfur standards. Results on SO(2) speciation gained from XANES are used to compare platinum-sulfur electronic interactions for Pt(3)Co/VC versus Pt/VC catalysts in order to understand the difference between the two catalysts in terms of SO(2) contamination.