O-H stretch overtone excitation of ethyl hydroperoxide conformers

J Phys Chem A. 2011 Dec 8;115(48):14040-4. doi: 10.1021/jp208467f. Epub 2011 Nov 11.

Abstract

We present laser photoacoustic spectra of ethyl hydroperoxide (EHP) for 3-6 quanta of O-H stretch. Spectra are consistent with ab initio spectral simulations that take into account the influence of torsional motion about the O-O bond on O-H stretch overtone excitation. Experimental and simulated spectra share two trends. First, spectral features due to torsional excitation, including hot bands, become more prominent with increasing O-H stretch excitation, as has been shown previously for similar molecules such as methyl hydroperoxide. Second, contributions from the two different EHP conformers become clearly distinguishable at higher O-H stretch excitation, mainly due to the role of torsional motion. Results are consistent with a higher energy separation (330 cm(-1)) between the lower energy anti and the higher energy gauche conformers than predicted by electronic structure calculations (137 cm(-1)). Calculated absorption intensities are consistently higher than experimental values by ~30% but within the experimental uncertainty. With each additional O-H stretch overtone, the dropoff in calculated integrated absorption intensities at room temperature becomes less extreme, with a 14-fold dropoff from 3ν(OH) to 4ν(OH) and an 8-fold decrease from 5ν(OH) to 6ν(OH).