Validation of surface plasmon resonance screening of a diverse chemical library for the discovery of protein tyrosine phosphatase 1b binders

Anal Biochem. 2012 Feb 15;421(2):417-27. doi: 10.1016/j.ab.2011.09.015. Epub 2011 Sep 29.

Abstract

We investigated the suitability of surface plasmon resonance (SPR) for providing quantitative binding information from direct screening of a chemical library on protein tyrosine phosphatase 1b (PTP1B). The experimental design was established from simulations to detect binding with K(D) < 10⁻⁴ M. The 1120 compounds (cpds) were injected sequentially at concentrations [C(cpd)] of 0.5 or 10 μM over various target surfaces. An optimized evaluation procedure was applied. More than 90% of cpds showed no detectable signal in four screens. The 30 highest responders at C(cpd)=10 μM, of which 25 were selected in at least one of three screens at C(cpd)=0.5 μM, contained 22 promiscuous binders and 8 potential PTP1B-specific binders with K(D) ~10⁻⁵ M. Inhibition of PTP1B activity was assayed and confirmed for 6 of these, including sanguinarine, a known PTP1B inhibitor. C(cpd) dependence studies fully confirmed screening conclusions. The quantitative consistency of SPR data led us to propose a structure-activity relationship (SAR) model for developing selective PTP1B inhibitors based on the ranking of 10 arylbutylpiperidine analogs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Amino Acid Sequence
  • Drug Discovery / methods*
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / isolation & purification*
  • Enzyme Inhibitors / pharmacology
  • Inhibitory Concentration 50
  • Open Reading Frames
  • Protein Tyrosine Phosphatase, Non-Receptor Type 1 / antagonists & inhibitors
  • Protein Tyrosine Phosphatase, Non-Receptor Type 1 / metabolism*
  • Small Molecule Libraries*
  • Surface Plasmon Resonance / methods*

Substances

  • Enzyme Inhibitors
  • Small Molecule Libraries
  • Protein Tyrosine Phosphatase, Non-Receptor Type 1