Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

Biochem Biophys Res Commun. 2011 Nov 18;415(2):288-93. doi: 10.1016/j.bbrc.2011.10.043. Epub 2011 Oct 18.

Abstract

We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p=0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice but improved significantly after lenti-ABCG1 treatment. Data demonstrate that in vivo instillation of lenti-ABCG1 in GM-CSF KO mice is sufficient to restore pulmonary homeostasis by: (1) upregulating ABCG1; (2) reducing intra and extracellular lipids; and (3) improving lung function. Results suggest that the ABCG1 lipid transporter is the key downstream target of GM-CSF-induced PPARγ necessary for surfactant catabolism.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily G, Member 1
  • ATP-Binding Cassette Transporters / genetics*
  • Animals
  • Cholesterol / metabolism*
  • Granulocyte-Macrophage Colony-Stimulating Factor / genetics*
  • Humans
  • Lentivirus
  • Lung / metabolism
  • Lung / physiology*
  • Macrophages, Alveolar / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Phospholipids / metabolism*
  • Up-Regulation

Substances

  • ABCG1 protein, human
  • ATP Binding Cassette Transporter, Subfamily G, Member 1
  • ATP-Binding Cassette Transporters
  • Phospholipids
  • Granulocyte-Macrophage Colony-Stimulating Factor
  • Cholesterol