Synthesis, characterization, and spectroscopic characteristics of chromium(6+) and -(4+) silicalite-2 (ZSM-11) materials

Inorg Chem. 2011 Nov 7;50(21):11184-91. doi: 10.1021/ic2017352. Epub 2011 Oct 13.

Abstract

The systematic incorporation of Cr ions into a phase-pure silicalite-2 lattice was accomplished through hydrothermal synthesis using 3,5-dimethylpiperidinium as a templating agent. The Cr ions, after calcination to remove the template, were in the 6+ oxidation state, with their incorporation into the lattice verified by the systematic expansion of the unit cell as a function of Cr loading. The structures of these materials as revealed by electronic spectroscopy and X-ray absorption near-edge spectroscopy (XANES) were consistent with the dioxo structure typically exhibited by Cr(6+) in an amorphous silica matrix. These materials were highly luminescent, with the emission spectra showing an unusually well-resolved vibronic structure characteristic of an emissive site with little inhomogeneous broadening. The site was reduced under flowing CO to Cr(4+), as characterized by XANES. The reduction of Cr from 6+ to 4+ resulted in unit-cell volumes that are systematically smaller than those observed with Cr(6+), even though the ionic radius of Cr(4+) is larger. This is attributed to the fact that the Cr(6+) site is not a simple metal ion but a significantly larger [CrO(2)](2+) unit, requiring a larger lattice expansion to accommodate it. Through analysis of the XANES preedge and assignment of the ligand-field spectrum of the Cr(4+) ions, it is possible to establish isomorphic substitution into the silicalite lattice.