Formation and elimination of surface nanodefects on ultraflat metal surfaces produced by template stripping

Langmuir. 2011 Nov 15;27(22):13415-9. doi: 10.1021/la203596p. Epub 2011 Oct 14.

Abstract

Ultraflat metal surfaces are used in template stripping (TS), which is a method for obtaining a metal with an average surface roughness on the order of <1 nm. This is important for plasmonics, for the production of high-quality SAM surfaces, and for many other applications. Herein we show for the first time that TS indeed introduces a very high density of surface nanodefects (twinning and stacking faults), which can strongly hinder surface-induced properties such as SAM ordering and plasmonic phenomena, despite the seemingly overall ultrahigh flatness. We have used state of the art characterization techniques such as HRXRD, spherical-aberration-corrected HRTEM, and STM. We also demonstrate how these nanodefects can be completely eliminated.