The role of carboxylate ligands in two novel cyanido-bridged 2D coordination networks Cu(II)-W(V) and Mn(II)-Nb(IV)

Dalton Trans. 2011 Dec 7;40(45):12350-7. doi: 10.1039/c1dt10800j. Epub 2011 Oct 11.

Abstract

We report on the synthesis, molecular structure and magnetic properties of two novel coordination polymers: [{Cu(II)(4)(pic)(2)(H(2)O)(2)(MeOH)}{W(V)(CN)(8)}(2)]·MeOH·4H(2)O (1) and [{Mn(II)(3)(HCOO)(2)(H(2)O)(4)}{Mn(II)(H(2)O)(3)(HCONH(2))}(2){Nb(IV)(CN)(8)}(2)]·4HCONH(2)·2H(2)O (2). The single-crystal X-ray diffraction analysis of 1 shows that its molecular structure can be interpreted as a cyanido bridged (3,4,7)-connected 2D bilayer built of two different subnets sharing the tungsten centers. The magnetic measurements suggest that the system reveals long-range ferromagnetic ordering between Cu(II) and W(V) centers below 13.4 K. The molecular structure of (2) reveals a 2D topology of layers built of cyanido and formato bridging ligands. The system reveals ferrimagnetic behavior with a critical temperature at 17.8 K.