Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance

Nat Biotechnol. 2011 Oct 9;29(12):1128-31. doi: 10.1038/nbt.1988.

Abstract

Transgenic crops that produce Bacillus thuringiensis (Bt) toxins are grown widely for pest control, but insect adaptation can reduce their efficacy. The genetically modified Bt toxins Cry1AbMod and Cry1AcMod were designed to counter insect resistance to native Bt toxins Cry1Ab and Cry1Ac. Previous results suggested that the modified toxins would be effective only if resistance was linked with mutations in genes encoding toxin-binding cadherin proteins. Here we report evidence from five major crop pests refuting this hypothesis. Relative to native toxins, the potency of modified toxins was >350-fold higher against resistant strains of Plutella xylostella and Ostrinia nubilalis in which resistance was not linked with cadherin mutations. Conversely, the modified toxins provided little or no advantage against some resistant strains of three other pests with altered cadherin. Independent of the presence of cadherin mutations, the relative potency of the modified toxins was generally higher against the most resistant strains.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacillus thuringiensis / genetics*
  • Bacillus thuringiensis / metabolism
  • Bacillus thuringiensis Toxins
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Cadherins / genetics
  • Cadherins / metabolism*
  • Endotoxins / genetics*
  • Endotoxins / metabolism
  • Hemolysin Proteins / genetics*
  • Hemolysin Proteins / metabolism
  • Insecta / pathogenicity
  • Insecticide Resistance / genetics
  • Moths / parasitology
  • Mutation
  • Pest Control, Biological
  • Plants, Genetically Modified

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Cadherins
  • Endotoxins
  • Hemolysin Proteins
  • insecticidal crystal protein, Bacillus Thuringiensis