Uncontrollable, but not controllable, stress desensitizes 5-HT1A receptors in the dorsal raphe nucleus

J Neurosci. 2011 Oct 5;31(40):14107-15. doi: 10.1523/JNEUROSCI.3095-11.2011.

Abstract

Uncontrollable stressors produce behavioral changes that do not occur if the organism can exercise behavioral control over the stressor. Previous studies suggest that the behavioral consequences of uncontrollable stress depend on hypersensitivity of serotonergic neurons in the dorsal raphe nucleus (DRN), but the mechanisms involved have not been determined. We used ex vivo single-unit recording in rats to test the hypothesis that the effects of uncontrollable stress are produced by desensitization of DRN 5-HT(1A) autoreceptors. These studies revealed that uncontrollable, but not controllable, tail shock impaired 5-HT(1A) receptor-mediated inhibition of DRN neuronal firing. Moreover, this effect was observed only at time points when the behavioral effects of uncontrollable stress are present. Furthermore, temporary inactivation of the medial prefrontal cortex with the GABA(A) receptor agonist muscimol, which eliminates the protective effects of control on behavior, led even controllable stress to now produce functional desensitization of DRN 5-HT(1A) receptors. Additionally, behavioral immunization, an experience with controllable stress before uncontrollable stress that prevents the behavioral outcomes of uncontrollable stress, also blocked functional desensitization of DRN 5-HT(1A) receptors by uncontrollable stress. Last, Western blot analysis revealed that uncontrollable stress leads to desensitization rather than downregulation of DRN 5-HT(1A) receptors. Thus, treatments that prevent controllable stress from being protective led to desensitization of 5-HT(1A) receptors, whereas treatments that block the behavioral effects of uncontrollable stress also blocked 5-HT(1A) receptor desensitization. These data suggest that uncontrollable stressors produce a desensitization of DRN 5-HT(1A) autoreceptors and that this desensitization is responsible for the behavioral consequences of uncontrollable stress.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology
  • Animals
  • Dose-Response Relationship, Drug
  • Electroshock / adverse effects
  • Male
  • Raphe Nuclei / drug effects
  • Raphe Nuclei / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Serotonin, 5-HT1A / metabolism*
  • Serotonin / metabolism
  • Serotonin / pharmacology
  • Stress, Psychological / metabolism*
  • Stress, Psychological / psychology

Substances

  • Receptor, Serotonin, 5-HT1A
  • Serotonin