High energy resolution bandpass photon detector for inverse photoemission spectroscopy

Rev Sci Instrum. 2011 Sep;82(9):093901. doi: 10.1063/1.3630948.

Abstract

We report a bandpass ultraviolet photon detector for inverse photoemission spectroscopy with energy resolution of 82 ± 2 meV. The detector (Sr(0.7)Ca(0.3)F(2)/acetone) consists of Sr(0.7)Ca(0.3)F(2) entrance window with energy transmission cutoff of 9.85 eV and acetone as detection gas with 9.7 eV photoionization threshold. The response function of the detector, measured using synchrotron radiation, has a nearly Gaussian shape. The n = 1 image potential state of Cu(100) and the Fermi edge of silver have been measured to demonstrate the improvement in resolution compared to the CaF(2)/acetone detector. To show the advantage of improved resolution of the Sr(0.7)Ca(0.3)F(2)/acetone detector, the metal to semiconductor transition in Sn has been studied. The pseudogap in the semiconducting phase of Sn could be identified, which is not possible with the CaF(2)/acetone detector because of its worse resolution.