Biomimetic vibrissal sensing for robots

Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3085-96. doi: 10.1098/rstb.2011.0164.

Abstract

Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biomimetics / instrumentation
  • Biomimetics / methods*
  • Robotics / instrumentation
  • Robotics / methods*