Sequence TTKF ↓ QE defines the site of proteolytic cleavage in Mhp683 protein, a novel glycosaminoglycan and cilium adhesin of Mycoplasma hyopneumoniae

J Biol Chem. 2011 Dec 2;286(48):41217-41229. doi: 10.1074/jbc.M111.226084. Epub 2011 Oct 3.

Abstract

Mycoplasma hyopneumoniae colonizes the ciliated respiratory epithelium of swine, disrupting mucociliary function and inducing chronic inflammation. P97 and P102 family members are major surface proteins of M. hyopneumoniae and play key roles in colonizing cilia via interactions with glycosaminoglycans and mucin. The p102 paralog, mhp683, and homologs in strains from different geographic origins encode a 135-kDa pre-protein (P135) that is cleaved into three fragments identified here as P45(683), P48(683), and P50(683). A peptide sequence (TTKF↓QE) was identified surrounding both cleavage sites in Mhp683. N-terminal sequences of P48(683) and P50(683), determined by Edman degradation and mass spectrometry, confirmed cleavage after the phenylalanine residue. A similar proteolytic cleavage site was identified by mass spectrometry in another paralog of the P97/P102 family. Trypsin digestion and surface biotinylation studies showed that P45(683), P48(683), and P50(683) reside on the M. hyopneumoniae cell surface. Binding assays of recombinant proteins F1(683)-F5(683), spanning Mhp683, showed saturable and dose-dependent binding to biotinylated heparin that was inhibited by unlabeled heparin, fucoidan, and mucin. F1(683)-F5(683) also bound porcine epithelial cilia, and antisera to F2(683) and F5(683) significantly inhibited cilium binding by M. hyopneumoniae cells. These data suggest that P45(683), P48(683), and P50(683) each display cilium- and proteoglycan-binding sites. Mhp683 is the first characterized glycosaminoglycan-binding member of the P102 family.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adhesins, Bacterial / genetics
  • Adhesins, Bacterial / metabolism*
  • Amino Acid Motifs
  • Animals
  • Bacterial Adhesion / physiology*
  • Cells, Cultured
  • Cilia / metabolism
  • Cilia / microbiology
  • Glycosaminoglycans / genetics
  • Glycosaminoglycans / metabolism*
  • Mycoplasma hyopneumoniae / genetics
  • Mycoplasma hyopneumoniae / metabolism*
  • Respiratory Mucosa / metabolism
  • Respiratory Mucosa / microbiology
  • Swine

Substances

  • Adhesins, Bacterial
  • Glycosaminoglycans