Micro-structural basis for particular vulnerability of the superolateral neck trabecular bone in the postmenopausal women with hip fractures

Bone. 2012 Jan;50(1):63-8. doi: 10.1016/j.bone.2011.09.044. Epub 2011 Sep 22.

Abstract

In this study we analyzed the trabecular bone micro-architecture in the inferomedial and superolateral subregions of the femoral neck in a group with hip fractures and a control group of elderly women, with aim to clarify the micro-structural basis of bone fragility. Proximal femora from 29 Caucasian female cadavers were collected at Institute of Forensic Medicine in Belgrade (15 women with hip fracture: age 79.5±8.5 yrs.; and 14 women without hip fractures: age 74.1±9.3 yrs.). The femoral neck section was scanned in dry conditions using a micro-computed tomography (Scanco μCT 40), at 70 kV, 114 μA, 300 ms integration time, 36 μm resolution, isotropic, 1024×1024 pixels per slice, automatically evaluating trabecular micro-architecture using the built-in program of the micro-CT with direct 3D morphometry. The samples were foam padded to avoid any movement artifacts during scanning. Analysis of the neck section in the fracture group compared to the control cases demonstrated significantly lower bone volume fraction (mean: 6.3% vs. 11.2%, p=0.002), lower connectivity density (0.33/mm(3) vs. 0.74/mm(3), p=0.019) and higher trabecular separation (0.87 mm vs. 0.83 mm, p=0.030). Division into the superolateral and inferomedial regions of interest revealed that the superolateral neck displayed even more differences in micro-architectural properties between the fracture and non-fracture groups. Namely, while in the inferomedial neck only bone volume fraction and degree of anisotropy displayed significant inter-group variability (lower BV/TV with higher degree of anisotropy in the fracture group), in the superolateral neck almost all parameters were different between the fracture cases and the controls, where the fracture group showed a lower trabecular bone volume fraction (3.6% vs. 8.2%, p=0.001), lower connectivity (0.21 vs. 0.63/mm(3), p=0.008), more rod like trabecular structure (SMI: 2.94 vs. 2.62, p=0.049), higher separation and the thinned trabeculae (Tb.Sp: 0.89 vs. 0.85 mm, p=0.013; Tb.Th: 0.17 vs. 0.20 mm, p=0.05). In addition, after adjusting for the effects of BV/TV, the majority of differences disappeared, demonstrating that the bone loss manifests itself via the changes in micro-architectural parameters: trabecular thinning, rising the spacing between individual trabeculae, reducing trabecular connectivity and accentuating trabecular perforations leading to predominance of rod-like trabecular elements. Preferential impairment of the superolateral neck trabecular structure and organization in women with hip fracture reveals the region-dependent micro-structural basis of bone fragility in elderly women.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Aging
  • Bone Density
  • Female
  • Femur Neck / diagnostic imaging*
  • Femur Neck / ultrastructure*
  • Hip Fractures / pathology*
  • Humans
  • Tomography, X-Ray Computed / methods