Investigating the electronic properties of silicon nanosheets by first-principles calculations

J Mol Model. 2012 May;18(5):2147-52. doi: 10.1007/s00894-011-1235-9. Epub 2011 Sep 25.

Abstract

Using first-principles total energy calculations within the density functional theory (DFT), we investigated the electronic and structural properties of graphene-like silicon sheets. Our studies were performed using the LSDA (PWC) and GGS (PBE) approaches. Two configurations were explored: one corresponding to a defect-free layer (h-Si), and the other to a layer with defects (d-Si), both of which were in the armchair geometry. These sheets contained clusters of the C(n)H(m) type. We also investigated the effects of doping with group IV-A elements. Structural stability was studied by only considering positive vibration frequencies. Results showed that both h-Si and d-Si present a corrugated structure with concavity. h-Si sheets were found to be ionic (D.M. = 0.33 Debye) with an energy gap (HOMO-LUMO) of 0.77 eV in the LSDA theory and 0.76 eV in the GGS approach, while d-Si sheets were observed to be covalent (D.M. = 2.78 D), and exhibited semimetallic electronic behavior (HOMO-LUMO gap = 0.32 eV within the LSDA theory and 0.33 eV within the GGS approach). d-Si sheets doped with one carbon or one germanium preserved the polarity of the undoped d-Si sheets, as well as their semimetallic electronic behavior. However, when the sheets were doped with two C or two Ge atoms, or with one of each atom (to give Si(52)CGeH(18)), they retained the semimetallic behavior, but they changed from having ionic character to covalent character.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electronics
  • Electrons*
  • Graphite / chemistry*
  • Nanostructures / chemistry*
  • Quantum Theory
  • Silicon / chemistry*
  • Thermodynamics
  • Vibration

Substances

  • Graphite
  • Silicon