The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells

Atherosclerosis. 2011 Dec;219(2):468-74. doi: 10.1016/j.atherosclerosis.2011.09.004. Epub 2011 Sep 9.

Abstract

Background: Recent studies have reported that microRNA-145 (miR-145) is a critical mediator in the regulation of proliferation, differentiation, and phenotype expression of smooth muscle cells (SMCs). Previously, we established a system for differentiating human ESCs into vascular cells including endothelial cells (ECs) and vascular smooth muscle cells (SMCs). In the present study, we investigated the role of miR-145 in the differentiation process from human ESCs into ECs and SMCs.

Methods and results: Undifferentiated human ESCs were induced to differentiate into vascular lineage according to our established method. Quantitative RT-PCR analysis revealed that human ESC-derived precursor of SMCs (ES-pre-SMCs), similar to human aortic SMCs, expressed a significant amount of miR-145 as well as smooth muscle-specific proteins, compared to undifferentiated human ESCs, adult ECs, or ESC-derived ECs (ES-ECs). However, morphological analysis revealed that human ES-pre-SMCs appeared round and flattened in shape, though human aortic SMCs exhibited the typical spindle-like morphology of SMCs. In addition, Krüppel-like factor 4 and 5 (KLF4 and 5), direct targets of miR-145 and suppressors of smooth muscle differentiation, were upregulated in ES-pre-SMCs compared to aortic SMCs, indicating ES-pre-SMCs were not fully differentiated SMCs. Overexpression of miR-145 in ES-pre-SMCs upregulated the expression of smooth muscle markers, repressed KLF4 and 5 expressions, and changed their morphology into a differentiated spindle-like shape. Furthermore, by introduction of miR-145, ES-pre-SMC proliferation was significantly inhibited and carbachol-stimulated contraction of ES-pre-SMCs was significantly increased. In contrast, downregulation of miR-145 in ES-pre-SMCs upregulated KLF4 and 5 expressions, suppressed the expression of smooth muscle markers, and left unchanged their proliferation and contractility. In ES-ECs, miR-145 overexpression did not induce the synthesis of smooth muscle-related proteins nor suppress the expression of endothelial nitric oxide synthase.

Conclusion: We showed that miR-145 can regulate the fate and phenotype of human ES-pre-SMCs as they become fully differentiated SMCs. Overexpression of miR-145 on human ES-pre-SMCs is a promising method to obtain functional mature SMCs from human ESCs, which are required for reliable experimental research in the fields of atherosclerosis, hypertension and other vascular diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Biomarkers / metabolism
  • Carbachol / pharmacology
  • Cell Differentiation* / drug effects
  • Cell Line
  • Cell Proliferation
  • Cell Shape
  • Embryonic Stem Cells / drug effects
  • Embryonic Stem Cells / metabolism*
  • Endothelial Cells / drug effects
  • Endothelial Cells / metabolism*
  • Gene Expression Regulation, Developmental
  • Genotype
  • Humans
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics
  • Kruppel-Like Transcription Factors / metabolism
  • MicroRNAs / metabolism*
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / drug effects
  • Muscle, Smooth, Vascular / metabolism*
  • Myocytes, Smooth Muscle / drug effects
  • Myocytes, Smooth Muscle / metabolism*
  • Phenotype
  • RNA Interference
  • Reverse Transcriptase Polymerase Chain Reaction
  • Transfection

Substances

  • Biomarkers
  • KLF4 protein, human
  • KLF5 protein, human
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • MIRN145 microRNA, human
  • MicroRNAs
  • Carbachol