Establishing the reproducibility of two approaches to quantify white matter tract integrity in stroke

Neuroimage. 2012 Feb 1;59(3):2393-400. doi: 10.1016/j.neuroimage.2011.09.009. Epub 2011 Sep 14.

Abstract

Diffusion tensor imaging can provide unique and detailed information about white matter anatomy following stroke. Fiber tract reconstruction using tract-based techniques and cross-sectional region of interest delineation are two common approaches to quantify white matter integrity. After stroke, white matter tract integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption is associated with degree of functional impairment and response to skill training in participants with stroke. However, the reliability and validity of these approaches has not been systematically evaluated nor have the two approaches been directly compared in individuals with chronic stroke. Ten well-recovered individuals with chronic, right-sided, ischemic stroke in the sub-cortex and ten age-, gender- and handedness-matched healthy participants were studied. Semi-automated tractography of the ipsi- and contralesional corticospinal tract and cross-sectional region of interest drawing of the posterior limb of the internal capsule were performed bilaterally. Fractional anisotropy (FA) values and the hemispheric asymmetry in FA were the primary measures of tract integrity. Two raters performed each analysis method twice to evaluate inter- and intra-rater reliability. Participants with stroke were compared to healthy individuals to determine validity of each analysis approach. Correlational analyses were conducted to examine the relationships between the two approaches and the association between approaches and upper extremity motor impairment. Both analyses methods generally demonstrated good to excellent intra- and inter-rater reliability in each group (p<0.05). Stroke participants demonstrated lower mean FA values in both ipsi- and contralesional tract integrity, and larger FA hemispheric asymmetry as compared with healthy individuals (p<0.05). Comparison between the analysis approaches revealed significant associations between approaches across both groups and within each group (p<0.05). In stroke, individual tract integrity was not correlated between approaches for ipsilesional (r=0.26) or contralesional (0.15) tracts, nor was FA hemispheric asymmetry (r=0.18). Additionally, contralesional mean FA quantified with the cross-sectional approach correlated with upper extremity motor impairment (r=0.69). Importantly, this study is the first to systematically characterize the reliability of tract-based and cross-sectional DTI analysis approaches in well-recovered individuals with chronic stroke and matched healthy participants. Results suggest both tract-based and cross-sectional approaches to evaluate white matter tract integrity are reliable, can differentiate between groups of stroke and healthy participants, and are associated with one another. However, only mean FA values for the contralesional side derived using the cross-sectional approach were related to upper extremity impairment. Our findings suggest that each approach provides complimentary rather than redundant information regarding integrity and support the use of both approaches in combination in future investigations in well-recovered individuals with stroke.

MeSH terms

  • Aged
  • Algorithms
  • Anatomy, Cross-Sectional
  • Data Interpretation, Statistical
  • Diffusion Tensor Imaging / methods*
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Male
  • Middle Aged
  • Movement Disorders / etiology
  • Movement Disorders / physiopathology
  • Neural Pathways / pathology*
  • Neuropsychological Tests
  • Reproducibility of Results
  • Software
  • Stroke / pathology*
  • Stroke / psychology
  • Upper Extremity / physiopathology