Generation of feeder-free pig induced pluripotent stem cells without Pou5f1

Cell Transplant. 2012;21(5):815-25. doi: 10.3727/096368911X601019. Epub 2011 Sep 23.

Abstract

The pig represents an ideal large-animal model, intermediate between rodents and humans, for the preclinical assessment of emerging cell therapies. As no validated pig embryonic stem (pES) cell lines have been derived so far, pig induced pluripotent stem cells (piPSCs) should offer an alternative source of undifferentiated cells to advance regenerative medicine research from bench to clinical trial. We report here for the first time the derivation of piPSCs from adult fibroblast with only three transcription factors: Sox2 (sex determining region Y-box 2), Klf4 (Krüppel-like factor 4), and c-Myc (avian myelocytomatosis viral oncogene homolog). We have been able to demonstrate that exogenous Pou5f1 (POU domain class 5 transcription factor 1; abbreviated as Octamer-4: Oct4) is dispensable to achieve and maintain pluripotency in the generation of piPSCs. To the best of our knowledge, this is also the first report of somatic reprogramming in any species without the overexpression, either directly or indirectly, of Oct4. Moreover, we were able to generate piPSCs without the use of feeder cells, approaching thus xeno-free conditions. Our work paves the way for the derivation of clinical grade piPSCs for regenerative medicine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Cells, Cultured
  • Cellular Reprogramming
  • Feeder Cells / cytology
  • Fibroblasts / cytology
  • Induced Pluripotent Stem Cells / cytology*
  • Induced Pluripotent Stem Cells / metabolism
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics
  • Kruppel-Like Transcription Factors / metabolism
  • Octamer Transcription Factor-3 / metabolism*
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism
  • Regenerative Medicine
  • SOXB1 Transcription Factors / genetics
  • SOXB1 Transcription Factors / metabolism
  • Swine

Substances

  • KLF4 protein, human
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • Octamer Transcription Factor-3
  • Proto-Oncogene Proteins c-myc
  • SOXB1 Transcription Factors