Cultured cell-derived extracellular matrix scaffolds for tissue engineering

Biomaterials. 2011 Dec;32(36):9658-66. doi: 10.1016/j.biomaterials.2011.08.091. Epub 2011 Sep 19.

Abstract

Cell-derived extracellular matrix (ECM) scaffolds have received considerable interest for tissue engineering applications. In this study, ECM scaffolds derived from mesenchymal stem cell (MSC), chondrocyte, and fibroblast were prepared by culturing cells in a selectively removable poly(lactic-co-glycolic acid) (PLGA) template. These three types of ECM scaffolds were used for in vitro cultures of MSC and fibroblasts to examine their potential as scaffolds for cartilage and skin tissue engineering. The MSC were cultured in MSC- and chondrocyte-derived ECM scaffolds. The ECM scaffolds supported cell adhesion, promoted both cell proliferation and the production of ECM and demonstrated a stronger stimulatory effect on the chondrogenesis of MSC compared with a conventional pellet culture method. Histological and immunohistochemical staining indicated that cartilage-like tissues were regenerated after the MSC were cultured in ECM scaffolds. Fibroblasts were cultured in the fibroblast-derived ECM scaffolds. Fibroblasts proliferated and produced ECM to fill the pores and spaces in the scaffold. After 2 weeks of culture, a uniform multilayered tissue was generated with homogenously distributed fibroblasts. Cell-derived ECM scaffolds have been demonstrated to facilitate tissue regeneration and will be a useful tool for tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Survival / drug effects
  • Cells, Cultured
  • Chondrocytes / cytology
  • Chondrocytes / drug effects
  • Chondrocytes / ultrastructure
  • Extracellular Matrix / drug effects
  • Extracellular Matrix / metabolism*
  • Extracellular Matrix / ultrastructure
  • Fibroblasts / cytology
  • Fibroblasts / ultrastructure
  • Humans
  • Lactic Acid / pharmacology
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / ultrastructure
  • Polyglycolic Acid / pharmacology
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*

Substances

  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid