[Variation of air pollution in new Tangshan industrial area during winter heating period]

Huan Jing Ke Xue. 2011 Jul;32(7):1874-80.
[Article in Chinese]

Abstract

To illuminate the air pollution situation of the new Tangshan industrial area in the heating period, the observation of atmospheric pollutants was conducted in Tangshan City, Qianan City and Caofeidian Town from Oct. 2009 to Apr. 2010. The result showed that air pollution was serious in the area in winter. The regional mean concentration of NO, NO2, SO2, CO, PM2.5 and PM10 reached (26 +/- 28), (52 +/- 27), (72 +/- 53), (3 500 +/- 3 600), (82 +/- 65), (164 +/- 121) microg x m(-3) in the heating period, respectively. The concentration of NO and SO2 was 2.5 times in the heating period more than in the non-heating period. The concentration of NO2 and PM10 increased by -30%. The rates that CO and PM10 exceeded the National Ambient Air Quality Standard II were 27% and 40%; and the rate that PM2.5 exceeded the WHO IT1 Standard was 38%. The typical diurnal variations of NO, NO2, SO2, PM2.5 and PM10 were similar with peaking at 08:00 and 18:00, but the diurnal variation of CO was single peak at 08:00 with accumulating in evening. The peaks of NO, CO and SO2 were very high in morning because of the rush hours and the heating, which were 50, 90, and 5100 microg x m(-3), respectively. The peaks of NO2, PM2.5 and PM10 were relatively gentle, which were 56, 105, and 202 microg x m(-3), respectively. The cluster analysis of backward trajectories showed only the northerwinds, the cold airs can wash away the air pollution, while the southerwinds and easternwinds can easily accumulate the pollutants or transport the pollutants to the Beijing-Tianjin region.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants / analysis*
  • China
  • Cities
  • Environmental Monitoring / methods*
  • Industry
  • Nitrogen Dioxide / analysis
  • Particle Size
  • Particulate Matter / analysis*
  • Seasons*
  • Sulfur Dioxide / analysis

Substances

  • Air Pollutants
  • Particulate Matter
  • Sulfur Dioxide
  • Nitrogen Dioxide