Neurotoxicity following acute inhalation exposure to the oil dispersant COREXIT EC9500A

J Toxicol Environ Health A. 2011;74(21):1405-18. doi: 10.1080/15287394.2011.606796.

Abstract

Consequent to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico, there is an emergent concern about the short- and long-term adverse health effects of exposure to crude oil, weathered-oil products, and oil dispersants among the workforce employed to contain and clean up the spill. Oil dispersants typically comprise of a mixture of solvents and surfactants that break down floating oil to micrometer-sized droplets within the water column, thus preventing it from reaching the shorelines. As dispersants are generally sprayed from the air, workers are at risk for exposure primarily via inhalation. Such inhaled fractions might potentially permeate or translocate to the brain via olfactory or systemic circulation, producing central nervous system (CNS) abnormalities. To determine whether oil dispersants pose a neurological risk, male Sprague-Dawley rats were exposed by whole-body inhalation exposure to a model oil dispersant, COREXIT EC9500A (CE; approximately 27 mg/m(3) × 5 h/d × 1 d), and various molecular indices of neural dysfunction were evaluated in discrete brain areas, at 1 or 7 d postexposure. Exposure to CE produced partial loss of olfactory marker protein in the olfactory bulb. CE also reduced tyrosine hydroxylase protein content in the striatum. Further, CE altered the levels of various synaptic and neuronal intermediate filament proteins in specific brain areas. Reactive astrogliosis, as evidenced by increased expression of glial fibrillary acidic protein, was observed in the hippocampus and frontal cortex following exposure to CE. Collectively, these findings are suggestive of disruptions in olfactory signal transduction, axonal function, and synaptic vesicle fusion, events that potentially result in an imbalance in neurotransmitter signaling. Whether such acute molecular aberrations might persist and produce chronic neurological deficits remains to be ascertained.

MeSH terms

  • Animals
  • Brain / drug effects*
  • Brain / metabolism
  • Emulsifying Agents / toxicity*
  • Environmental Restoration and Remediation / adverse effects*
  • Glial Fibrillary Acidic Protein / biosynthesis
  • Inhalation Exposure / adverse effects*
  • Lipids / toxicity*
  • Male
  • Models, Animal
  • Olfactory Marker Protein / biosynthesis
  • Petroleum Pollution
  • Rats
  • Rats, Sprague-Dawley
  • Toxicity Tests, Acute
  • Tyrosine 3-Monooxygenase / biosynthesis

Substances

  • Emulsifying Agents
  • Glial Fibrillary Acidic Protein
  • Lipids
  • Olfactory Marker Protein
  • Omp protein, rat
  • corexit 9500
  • Tyrosine 3-Monooxygenase