Theoretical study on intramolecular allene-diene cycloadditions catalyzed by PtCl2 and Au(I) complexes

Dalton Trans. 2011 Nov 14;40(42):11095-105. doi: 10.1039/c1dt11061f. Epub 2011 Sep 6.

Abstract

The intramolecular [4C+3C] cycloaddition reaction of allenedienes catalysed by PtCl(2) and several Au(I) complexes has been studied by means of DFT calculations. Overall, the reaction mechanism comprises three main steps: (i) the formation of a metal allyl cation intermediate, (ii) a [4C(4π)+3C(2π)] cycloaddition that produces a seven-membered ring and (iii) a 1,2-hydrogen migration process on these intermediates. The reaction proceeds with complete diastereochemical control resulting from a favoured exo-like cycloaddition. Allene substituents have a critical influence in the reaction outcome and mechanism. The experimental observation of [4C+2C] cycloadducts in the reaction of substrates lacking substituents at the allene terminus can be explained through a mechanism involving Pt(IV)-metallacycles. With gold catalysts it is also possible to obtain [4C+2C] cycloaddition products, but only with substrates featuring terminally disubstituted allenes, and employing π-acceptor ligands at gold. However the mechanism for the formation of these adducts is completely different to that proposed with PtCl(2), and consists of the formation of a metal allyl cation, subsequent [4C+3C] cycloaddition and a 1,2-alkyl shift (ring contraction). Electronic analysis indicates that the divergent pathways are mainly controlled by the electronic properties of the gold heptacyclic species (L-Au-C(2)), in particular, the backdonation capacity of the metal center to the unoccupied C(2) (pπ-orbital) of the intermediate resulting from the [4C+3C] cycloaddition. The less backdonation, (i.e. using P(OR)(3)Au(+) complexes), the more favoured is the 1,2-alkyl shift.