Estimation and Variable Selection for Semiparametric Additive Partial Linear Models (SS-09-140)

Stat Sin. 2011 Jul;21(3):1225-1248. doi: 10.5705/ss.2009.140.

Abstract

Semiparametric additive partial linear models, containing both linear and nonlinear additive components, are more flexible compared to linear models, and they are more efficient compared to general nonparametric regression models because they reduce the problem known as "curse of dimensionality". In this paper, we propose a new estimation approach for these models, in which we use polynomial splines to approximate the additive nonparametric components and we derive the asymptotic normality for the resulting estimators of the parameters. We also develop a variable selection procedure to identify significant linear components using the smoothly clipped absolute deviation penalty (SCAD), and we show that the SCAD-based estimators of non-zero linear components have an oracle property. Simulations are performed to examine the performance of our approach as compared to several other variable selection methods such as the Bayesian Information Criterion and Least Absolute Shrinkage and Selection Operator (LASSO). The proposed approach is also applied to real data from a nutritional epidemiology study, in which we explore the relationship between plasma beta-carotene levels and personal characteristics (e.g., age, gender, body mass index (BMI), etc.) as well as dietary factors (e.g., alcohol consumption, smoking status, intake of cholesterol, etc.).