Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs

Biomaterials. 2011 Dec;32(35):9271-81. doi: 10.1016/j.biomaterials.2011.08.049. Epub 2011 Sep 3.

Abstract

Cardiac tissue engineering (CTE) aims at regenerating damaged myocardium by combining cells to a biocompatible and/or bioactive matrix. Collagen and gelatin are among the most suitable materials used today for CTE approaches. In this study we compared the structural and biological features of collagen (C-RGD) or gelatin (G-FOAM)-based bioconstructs, seeded with human adult cardiac progenitor cells in the form of cardiospheres (CSps). The different morphology between C-RGD (fibrous ball-of-thread-like) and G-FOAM (trabecular sponge-like) was evidenced by SEM analysis and X-ray micro-tomography, and was reflected by their different mechanical characteristics. Seeded cells were viable and proliferating after 1 week in culture, and a reduced expression of cell-stress markers versus standard CSp culture was detected by realtime PCR. Cell engraftment inside the scaffolds was assessed by SEM microscopy and histology, evidencing more relevant cell migration and production of extracellular matrix in C-RGD versus G-FOAM. Immunofluorescence and realtime PCR analysis showed down-regulation of vascular and stemness markers, while early-to-late cardiac markers were consistently and significantly upregulated in G-FOAM and C-RGD compared to standard CSps culture, suggesting selective commitment towards cardiomyocytes. Overall our results suggest that CSp-bioconstructs have suitable mechanical properties and improved survival and cardiogenic properties, representing promising tools for CTE.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cattle
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Collagen / pharmacology*
  • Fluorescent Antibody Technique
  • Gelatin / pharmacology*
  • Gene Expression Regulation / drug effects
  • Humans
  • Microscopy, Electron, Scanning
  • Molecular Weight
  • Myocardium / cytology*
  • Phenotype
  • Rheology / drug effects
  • Spheroids, Cellular / cytology*
  • Spheroids, Cellular / drug effects
  • Spheroids, Cellular / ultrastructure
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*
  • X-Ray Microtomography

Substances

  • Gelatin
  • Collagen