Eag1 potassium channels as markers of cervical dysplasia

Oncol Rep. 2011 Dec;26(6):1377-83. doi: 10.3892/or.2011.1441. Epub 2011 Aug 31.

Abstract

Human ether à-go-go 1 (Eag1) potassium channels are potential tumor markers and therapeutic targets for several types of malignancies, including cervical cancer. Estrogens and human papilloma virus oncogenes regulate Eag1 gene expression, suggesting that Eag1 may already be present in pre-malignant lesions. Therefore, Eag1 could be used as an early marker and/or a potential risk indicator for cervical cancer. Consequently, we studied Eag1 protein expression by immunochemistry in cervical cancer cell lines, normal keratinocytes, cervical cytologies from intraepithelial lesions, biopsies from cervical intraepithelial neoplasias (CIN 1, 2 and 3) and in normal smears from patients taking or not taking estrogens. Two hundred and eighty-six samples obtained by liquid-based cytology and fifteen CIN biopsies were studied. We observed Eag1 protein expression in the cervical cancer cell lines, as opposed to normal keratinocytes. Eag1 was found in 67% of the cervical cytologies from low-grade intra-epithelial lesions and in 92% of the samples from high-grade intraepithelial lesions, but only in 27% of the normal samples. Noteworthy, morphologically normal cells obtained from dysplastic samples also exhibited Eag1 expression. In CIN biopsies we found that the higher the grade of the lesion, the broader the Eag1 protein distribution. Almost 50% of the normal patients taking estrogens displayed Eag1 expression. We suggest Eag1 as a potential marker of cervical dysplasia and a risk indicator for developing cervical lesions in patients taking estrogens. Eag1 detection in cervical cancer screening programs should help to improve early diagnosis and decrease mortality rates from this disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Cell Line, Tumor
  • Early Detection of Cancer
  • Ether-A-Go-Go Potassium Channels / genetics
  • Ether-A-Go-Go Potassium Channels / metabolism*
  • Female
  • Gene Expression
  • Humans
  • Neoplasm Grading
  • Uterine Cervical Dysplasia / diagnosis
  • Uterine Cervical Dysplasia / metabolism*
  • Uterine Cervical Dysplasia / pathology
  • Uterine Cervical Neoplasms / diagnosis
  • Uterine Cervical Neoplasms / metabolism
  • Uterine Cervical Neoplasms / pathology

Substances

  • Biomarkers, Tumor
  • Ether-A-Go-Go Potassium Channels
  • KCNH1 protein, human