The human paraoxonase gene cluster as a target in the treatment of atherosclerosis

Antioxid Redox Signal. 2012 Mar 15;16(6):597-632. doi: 10.1089/ars.2010.3774. Epub 2011 Oct 18.

Abstract

The paraoxonase (PON) gene cluster contains three adjacent gene members, PON1, PON2, and PON3. Originating from the same fungus lactonase precursor, all of the three PON genes share high sequence identity and a similar β propeller protein structure. PON1 and PON3 are primarily expressed in the liver and secreted into the serum upon expression, whereas PON2 is ubiquitously expressed and remains inside the cell. Each PON member has high catalytic activity toward corresponding artificial organophosphate, and all exhibit activities to lactones. Therefore, all three members of the family are regarded as lactonases. Under physiological conditions, they act to degrade metabolites of polyunsaturated fatty acids and homocysteine (Hcy) thiolactone, among other compounds. By detoxifying both oxidized low-density lipoprotein and Hcy thiolactone, PONs protect against atherosclerosis and coronary artery diseases, as has been illustrated by many types of in vitro and in vivo experimental evidence. Clinical observations focusing on gene polymorphisms also indicate that PON1, PON2, and PON3 are protective against coronary artery disease. Many other conditions, such as diabetes, metabolic syndrome, and aging, have been shown to relate to PONs. The abundance and/or activity of PONs can be regulated by lipoproteins and their metabolites, biological macromolecules, pharmacological treatments, dietary factors, and lifestyle. In conclusion, both previous results and ongoing studies provide evidence, making the PON cluster a prospective target for the treatment of atherosclerosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aryldialkylphosphatase / chemistry
  • Aryldialkylphosphatase / genetics*
  • Aryldialkylphosphatase / metabolism*
  • Atherosclerosis / drug therapy*
  • Atherosclerosis / enzymology*
  • Atherosclerosis / metabolism
  • Humans
  • Molecular Targeted Therapy*

Substances

  • Aryldialkylphosphatase