G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium

Am J Physiol Cell Physiol. 2011 Nov;301(5):C1262-9. doi: 10.1152/ajpcell.00501.2010. Epub 2011 Aug 24.

Abstract

G protein-coupled estrogen receptor 1 (GPER), also named GPR30, has been previously identified in the female reproductive system. In this study, GPER expression was found in the female rat myometrium by reverse transcriptase-polymerase chain reaction and immunocytochemistry. Using GPER-selective ligands, we assessed the effects of the GPER activation on resting membrane potential and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in rat myometrial cells, as well as on contractility of rat uterine strips. G-1, a specific GPER agonist, induced a concentration-dependent depolarization and increase in [Ca(2+)](i) in myometrial cells. The depolarization was abolished in Na(+)-free saline. G-1-induced [Ca(2+)](i) increase was markedly decreased by nifedipine, a L-type Ca(2+) channel blocker, by Ca(2+)-free or Na(+)-free saline. Intracellular administration of G-1 produced a faster and transitory increase in [Ca(2+)](i), with a higher amplitude than that induced by extracellular application, supporting an intracellular localization of the functional GPER in myometrial cells. Depletion of internal Ca(2+) stores with thapsigargin produced a robust store-activated Ca(2+) entry; the Ca(2+) response to G-1 was similar to the constitutive Ca(2+) entry and did not seem to involve store-operated Ca(2+) entry. In rat uterine strips, administration of G-1 increased the frequency and amplitude of contractions and the area under the contractility curve. The effects of G-1 on membrane potential, [Ca(2+)](i), and uterine contractility were prevented by pretreatment with G-15, a GPER antagonist, further supporting the involvement of GPER in these responses. Taken together, our results indicate that GPER is expressed and functional in rat myometrium. GPER activation produces depolarization, elevates [Ca(2+)](i) and increases contractility in myometrial cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Benzodioxoles / pharmacology
  • Calcium / metabolism
  • Calcium Channel Blockers / pharmacology
  • Cyclopentanes / pharmacology
  • Enzyme Inhibitors / pharmacology
  • Female
  • Membrane Potentials / drug effects
  • Myometrium / metabolism*
  • Nifedipine / pharmacology
  • Quinolines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, G-Protein-Coupled / agonists
  • Receptors, G-Protein-Coupled / antagonists & inhibitors
  • Receptors, G-Protein-Coupled / metabolism*
  • Thapsigargin / pharmacology
  • Uterine Contraction / drug effects
  • Uterine Contraction / metabolism

Substances

  • 1-(4-(6-bromobenzo(1,3)dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta(c)quinolin-8-yl)ethanone
  • 4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta(c)quinoline
  • Benzodioxoles
  • Calcium Channel Blockers
  • Cyclopentanes
  • Enzyme Inhibitors
  • Gper1 protein, rat
  • Quinolines
  • Receptors, G-Protein-Coupled
  • Thapsigargin
  • Nifedipine
  • Calcium