Preparation of hybrid mesoporous silica luminescent nanoparticles with lanthanide(III) complexes and their exhibition of white emission

Dalton Trans. 2011 Sep 28;40(36):9313-9. doi: 10.1039/c1dt10779h. Epub 2011 Aug 15.

Abstract

We chose dipicolinic acid as a tridentate chelating unit featuring ONO donors to react with lanthanide(III) ions to yield tight and protective N(3)O(6) environments around the lanthanide(III) ions. We immobilized the lanthanide(III)-dipicolinic acid complexes on colloidal mesoporous silica with diameter smaller than 100 nm by a covalent bond grafting technique and obtained nearly monodisperse luminescent Eu-dpa-Si and Tb-dpa-Si functionalized hybrid mesoporous silica nanomaterials. These hybrid nanomaterials were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and photoluminescence spectroscopic techniques. The hybrid mesoporous silica nanoparticles exhibit intense emission lines upon UV-light irradiation, owing to the effective intramolecular energy transfer from the chromophore to the central lanthanide Eu(3+) and Tb(3+) ions. Furthermore, the functionalized nanomaterials can be turned to white light materials after annealing at high temperature.