Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

Anal Chim Acta. 2011 Sep 30;702(2):178-87. doi: 10.1016/j.aca.2011.06.042. Epub 2011 Jun 28.

Abstract

This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45°C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known markers such as 5-hydroxymethylfurfural (5-HMF) as well as a range of other relevant compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. In addition, the multivariate analysis method of 2D correlation analysis was applied to the NMR data enabling the relevant compound variations to be confirmed and inter-compound correlations to be assessed, some reflecting common metabolic/chemical pathways and, therefore, offering improved insight into the chemical aspects of beer aging.