Coordination of methanol clusters to benzene: a computational study

J Phys Chem A. 2011 Sep 29;115(38):10556-64. doi: 10.1021/jp206248w. Epub 2011 Sep 1.

Abstract

Benzene-methanol cluster structures were investigated with theoretical chemistry methods to describe the microsolvation of benzene and the benzene-methanol azeotrope. Benzene-methanol (MeOH) clusters containing up to six methanol molecules have been calculated by ab initio [MP2/6-311++G(d,p)//MP2/6-31+G(d,p) + BSSE correction] method. The BSSE was found quite large with this basis set, hence, different extrapolation schemes in combination with the aug-cc-pVxZ basis sets have been used to estimate the complete basis set limit of the MP2 interaction energy [ΔE(MP2/CBS)]. For smaller clusters, n ≤ 3, DFT procedures (DFTB+, MPWB1K, M06-2X) have also been applied. Geometries obtained for these clusters by M06-2X and MP2 calculations are quite similar. Based on the MP2/CBS results, the most stable C(6)H(6)(MeOH)(3) cluster is characterized by a hydrogen bonded MeOH trimer chain interacting with benzene via π···H-O and O···H-C(benzene) hydrogen bonds. Larger benzene-MeOH clusters with n ≥ 4 consist of cyclic (MeOH)(n) subclusters interacting with benzene by dispersive forces, to be denoted by C(6)H(6) + (MeOH)(n). Interaction energies and cooperativity effects are discussed in comparison with methanol clusters. Besides MP2/CBS calculations, for selected larger clusters the M06-2X/6-311++G(d,p)//M06-2X/6-31+G(d,p) procedure including the BSSE correction was also used. Interaction energies obtained thereby are usually close to the MP2/CBS limit. To model the benzene-MeOH azeotrope, several structures for (C(6)H(6))(2)(MeOH)(3) clusters have been calculated. The most stable structures contain a tilted T-shaped benzene dimer interacting by π···H-O and O···H-C (benzene) hydrogen bonds with a (MeOH)(3) chain. A slightly less negative interaction energy results for a parallel displaced benzene sandwich dimer with a (MeOH)(3) chain atop of one of the benzene molecules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benzene / chemistry*
  • Methanol / chemistry*
  • Quantum Theory*

Substances

  • Benzene
  • Methanol