The influence of beam defocus on volume growth rates for electron beam induced platinum deposition

Nanotechnology. 2008 Dec 3;19(48):485302. doi: 10.1088/0957-4484/19/48/485302. Epub 2008 Nov 11.

Abstract

Electron beam induced deposition (EBID) is a versatile method for the controlled fabrication of conducting, semi-conducting and non-conducting structures down to the nanometer scale. In contrast to ion beam induced deposition, EBID processes are free of sputter effects, ion implantation and massive heat generation; however, they have much lower deposition rates. To push the deposition efficiency further towards its intrinsic limits, the individual influences of the process parameters have to be explored. In this work a platinum pre-cursor is used for the deposition of conducting nanorods on highly oriented pyrolytic graphite. The study shows the influence of a beam defocus during deposition on the volume growth rates. The temporal evolution of volume growth rates reveals a distinct maximum which is dependent on the defocus introduced, leading to an increase of deposited volumes by a factor 2.5 after the same deposition times. The observed maximum is explained by an increasing and saturating electron yield contributing to the final deposition process and constantly decreasing diffusion abilities of the pre-cursor molecules toward the tip of the nanorods, which is further supported by dwell time experiments.