Nanoscale scraping and dissection of collagen fibrils

Nanotechnology. 2008 Sep 24;19(38):384006. doi: 10.1088/0957-4484/19/38/384006. Epub 2008 Aug 12.

Abstract

The main function of collagen is mechanical, hence there is a fundamental scientific interest in experimentally investigating the mechanical and structural properties of collagen fibrils on the nanometre scale. Here, we present a novel atomic force microscopy (AFM) based scraping technique that can dissect the outer layer of a biological specimen. Applied to individual collagen fibrils, the technique was successfully used to expose the fibril core and reveal the presence of a D-banding-like structure. AFM nanoindentation measurements of fibril shell and core indicated no significant differences in mechanical properties such as stiffness (reduced modulus), hardness, adhesion and adhesion work. This suggests that collagen fibrils are mechanically homogeneous structures. The scraping technique can be applied to other biological specimens, as demonstrated on the example of bacteria.