Mathematical model and numerical simulation of the cell growth in scaffolds

Biomech Model Mechanobiol. 2012 May;11(5):677-88. doi: 10.1007/s10237-011-0342-y. Epub 2011 Aug 10.

Abstract

A scaffold is a three-dimensional matrix that provides a structural base to fill tissue lesion and provides cells with a suitable environment for proliferation and differentiation. Cell-seeded scaffolds can be implanted immediately or be cultured in vitro for a period of time before implantation. To obtain uniform cell growth throughout the entire volume of the scaffolds, an optimal strategy on cell seeding into scaffolds is important. We propose an efficient and accurate numerical scheme for a mathematical model to predict the growth and distribution of cells in scaffolds. The proposed numerical algorithm is a hybrid method which uses both finite difference approximations and analytic closed-form solutions. The effects of each parameter in the mathematical model are numerically investigated. Moreover, we propose an optimization algorithm which finds the best set of model parameters that minimize a discrete l(2) error between numerical and experimental data. Using the mathematical model and its efficient and accurate numerical simulations, we could interpret experimental results and identify dominating mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Division*
  • Models, Theoretical*
  • Tissue Engineering