Procedures for controlling the size, structure and optical properties of CdS quantum dots during synthesis in aqueous solution

J Fluoresc. 2012 Jan;22(1):59-69. doi: 10.1007/s10895-011-0930-3. Epub 2011 Aug 9.

Abstract

We report an easy approach for the synthesis of CdS Quantum Dots (CdS QDs) with high luminescence and temporal stability through the reaction of Cd(2+) and S(2-) in the presence of mercaptoacetic acid (MAA) as a capping reagent in aqueous medium, under normal pressure and room temperature. The influence of several experimental variables, including temperature, pH, the Cd/S ratio and the Cd/MAA ratio, on the optical properties of the QDs obtained was studied systematically. The experimental results indicate that these variables play an important role in determining the size and state of the surface of the nanoparticles, and hence their luminescent properties and temporal stability. The general aspects of nanocrystal nucleation and growth in the synthesis of nanocrystals were studied. The best conditions for the synthesis of nanoparticles of high quality are also reported. The CdS nanocrystals obtained exhibited a narrow PL band, with reproducible room-temperature quantum yields.