Electrophoretic deposition of ZnO nanoparticles, from micropatterns to substrate coverage

Nanotechnology. 2008 Jun 18;19(24):245301. doi: 10.1088/0957-4484/19/24/245301. Epub 2008 May 9.

Abstract

We report on an electrophoretic deposition (EPD) method that is suited for the preparation of both ZnO thin films and micropatterns. By applying small DC voltages between a Cu electrode and a conductive Si substrate, submersed in a suspension of ZnO quantum dots, we can cover entire substrates with ZnO layers of a tuneable thickness ranging from a few monolayers to 200 nm. The deposition occurs selectively at the cathode, which indicates that the ZnO particles have a positive charge. Atomic force microscopy was used to study the influence of the deposition voltage, time, and the quantum dot concentration on the final layer thickness. By using lithographically patterned Si substrates, the same technique enables the formation of ZnO micropatterns of variable thickness with dimensions down to 5 µm. This is done by depositing a ZnO layer on a Si substrate that is covered with a patterned, developed photoresist. After EPD, the resist is removed by submersing the substrate in the appropriate solvent without damaging the ZnO deposit. This illustrates the robustness of the layers obtained by EPD.