Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay

Appl Environ Microbiol. 2011 Nov;77(21):7459-68. doi: 10.1128/AEM.00267-11. Epub 2011 Aug 5.

Abstract

Despite the increasing knowledge of Synechococcus spp. and their co-occurring cyanophages in oceanic and coastal water, little is known about their abundance, distribution, and interactions in the Chesapeake Bay estuarine ecosystem. A 5-year interannual survey shows that Synechococcus spp. and their phages are persistent and abundant members of Chesapeake Bay microbial communities. Synechococcus blooms (10⁶ cells ml⁻¹) were often observed in summer throughout the Bay, contributing 20 to 40% of total phytoplankton chlorophyll a. The distribution of phycoerythrin-containing (PE-rich) Synechococcus cells appeared to mostly correlate with the salinity gradient, with higher abundances at higher salinities. Cyanophages infectious to Synechococcus were also abundant (up to 6 × 10⁵ viruses ml⁻¹ by the most probable number assay) during summer months in the Bay. The covariation in abundance of Synechococcus spp. and cyanophages was evident, although the latitude of observed positive correlation varied in different years, mirroring the changing environmental conditions and therefore the host-virus interactions. The impacts of cyanophages on host Synechococcus populations also varied spatially and temporally. Higher phage-related Synechococcus mortality was observed in drought years. Virus-mediated host mortality and subsequent liberation of dissolved organic matter (DOM) may substantially influence oceanic biogeochemical processing through the microbial loop as well as the microbial carbon pump. These observations emphasize the influence of environmental gradients on natural Synechococcus spp. and their phage population dynamics in the estuarine ecosystem.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Load
  • Bacteriophages / growth & development*
  • Maryland
  • Seasons
  • Seawater / microbiology*
  • Seawater / virology*
  • Synechococcus / growth & development*
  • Synechococcus / virology*
  • Viral Load