Ultrasonic myocardial integrated backscatter and myocardial wall thickness in animal experiments

Ultrasound Med Biol. 1990;16(1):29-36. doi: 10.1016/0301-5629(90)90083-o.

Abstract

The purpose of this study was to distinguish between normal and ischemic myocardium using ultrasonic integrated backscatter (IB) measurements and to relate IB with myocardial wall thickness. IB was measured in 9 open-chested Yorkshire pigs (24-30 kg) before, after 30 minutes of partial occlusion of the proximal left anterior descending coronary artery (LADCA), and after 60 minutes of subsequent reperfusion. The ultrasound transducer (4 MHz) was sutured onto the epicardial surface perfused by the LADCA. IB measurements were made with a repetition rate of 50 times per heart rate simultaneously with a left ventricular pressure signal. Myocardial wall thickness was measured off-line. The measurements of integrated backscatter, left ventricular pressure and wall thickness were based on mean values of ten subsequent cardiac cycles. End-systolic IB measurements were 5.3 dB higher during occlusion as compared to the reference measurements (7.1 +/- 3.2 dB versus 1.8 +/- 2.6 dB; p = 0.002). No statistically significant differences were found in end-systolic IB measurements. End-systolic wall thickness was 5 mm smaller during occlusion as compared to the reference measurements (7.2 +/- 1.4 mm versus 12.2 +/- 1.2 mm; p less than 0.001). Simple linear regression analysis showed a statistically significant inverse relationship between IB measurements and wall thickness in 21 out of the 23 sequences in which wall thickness could be measured. End-systolic IB measurements are favourable to distinguish acute ischemic myocardium from normal myocardium. There is a distinct inverse relationship between IB and myocardial wall thickness.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Coronary Disease / pathology*
  • Coronary Disease / physiopathology
  • Myocardial Reperfusion
  • Myocardium / pathology*
  • Regression Analysis
  • Swine
  • Systole
  • Ultrasonography*