A model for the stability of films stabilized by randomly packed spherical particles

Langmuir. 2011 Sep 20;27(18):11475-80. doi: 10.1021/la202028p. Epub 2011 Aug 18.

Abstract

Particle stabilized thin films occur in a range of industrial applications where their properties affect the efficiency of the process concerned. However, due to their dynamic and unstable nature they are difficult to observe experimentally. As such, a tractable way of gaining insight into the fundamental aspects of this complicated system is to use computer simulations of particles at interfaces. This paper presents modeling results of the effect of nonuniform packing of spherical particles on the stability of thin liquid films. Surface Evolver was used to model cells containing up to 20 particles, randomly packed in a thin liquid film. The capillary pressure required to rupture the film for a specific combination of particle arrangement, packing density, and contact angle was identified. The data from the periodic, randomly packed models has been used to find a relationship between particle packing density, contact angle, and critical capillary pressure which is refined to a simple equation that depends on the film loading and contact angle of the particles it contains. The critical capillary pressure for film rupture obeys the same trends observed for particles in regular 2D and 3D packing arrangements. The absolute values of P*(crit), however, are consistently lower than those for regular packing. This is due to the irregular arrangement of the particles, which allows for larger areas of free film to exist, lowering the critical capillary pressure required to rupture the film.