Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation

J Appl Physiol (1985). 2011 Nov;111(5):1249-58. doi: 10.1152/japplphysiol.00311.2011. Epub 2011 Jul 28.

Abstract

Inflammation during mechanical ventilation is thought to depend on regional mechanical stress. This can be produced by concentration of stresses and cyclic recruitment in low-aeration dependent lung. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) allows for noninvasive assessment of regional metabolic activity, an index of neutrophilic inflammation. We tested the hypothesis that, during mechanical ventilation, surfactant-depleted low-aeration lung regions present increased regional (18)F-FDG uptake suggestive of in vivo increased regional metabolic activity and inflammation. Sheep underwent unilateral saline lung lavage and were ventilated supine for 4 h (positive end-expiratory pressure = 10 cmH(2)O, tidal volume adjusted to plateau pressure = 30 cmH(2)O). We used PET scans of injected (13)N-nitrogen to compute regional perfusion and ventilation and injected (18)F-FDG to calculate (18)F-FDG uptake rate. Regional aeration was quantified with transmission scans. Whole lung (18)F-FDG uptake was approximately two times higher in lavaged than in nonlavaged lungs (2.9 ± 0.6 vs. 1.5 ± 0.3 10(-3)/min; P < 0.05). The increased (18)F-FDG uptake was topographically heterogeneous and highest in dependent low-aeration regions (gas fraction 10-50%, P < 0.001), even after correction for lung density and wet-to-dry lung ratios. (18)F-FDG uptake in low-aeration regions of lavaged lungs was higher than that in low-aeration regions of nonlavaged lungs (P < 0.05). This occurred despite lower perfusion and ventilation to dependent regions in lavaged than nonlavaged lungs (P < 0.001). In contrast, (18)F-FDG uptake in normally aerated regions was low and similar between lungs. Surfactant depletion produces increased and heterogeneously distributed pulmonary (18)F-FDG uptake after 4 h of supine mechanical ventilation. Metabolic activity is highest in poorly aerated dependent regions, suggesting local increased inflammation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bronchoalveolar Lavage / methods
  • Fluorodeoxyglucose F18 / pharmacokinetics
  • Inflammation / diagnostic imaging
  • Inflammation / drug therapy
  • Inflammation / metabolism
  • Lung / diagnostic imaging
  • Lung / metabolism*
  • Nitrogen Radioisotopes / administration & dosage
  • Positive-Pressure Respiration / methods
  • Positron-Emission Tomography / methods
  • Pulmonary Surfactants / metabolism*
  • Radiopharmaceuticals / pharmacokinetics
  • Respiration, Artificial / methods*
  • Sheep
  • Stress, Mechanical

Substances

  • Nitrogen Radioisotopes
  • Pulmonary Surfactants
  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18