Inorganic-organic hybrid vesicles with counterion- and pH-controlled fluorescent properties

J Am Chem Soc. 2011 Sep 7;133(35):14010-6. doi: 10.1021/ja204034g. Epub 2011 Aug 12.

Abstract

Two inorganic-organic hybrid clusters with one or two covalently linked pyrene fluorescent probes, [(n-C(4)H(9))(4)N](2)[V(6)O(13){(OCH(2))(3)C(NH(CO)CH(2)CH(2)CH(2)C(16)H(9))}{(OCH(2))(3)C-(NH(2))}] ((TBA(+))(2)1) and [(n-C(4)H(9))(4)N](2)[V(6)O(13){(OCH(2))(3)C(NH(CO)CH(2)CH(2)CH(2)C(16)H(9))}(2)] ((TBA(+))(2)2), respectively, are synthesized from Lindqvist type polyoxometalates (POMs). The incorporation of pyrene into POMs results in amphiphilic hybrid molecules and simultaneously offers a great opportunity to study the interaction between hybrid clusters and their counterions. 2D-NOESY NMR and fluorescence techniques have been used to study the role of counterions such as tetrabutyl ammonium (TBA) in the vesicle formation of the hybrid clusters. The TBA(+) ions not only screen the electrostatic repulsions between the POM head groups but also are involved in the hydrophobic region of the vesicular structure where they interrupt the formation of pyrene excimers that greatly perturbs the luminescence signal from the vesicle solution. By replacing the TBA(+) counterions with protons, the new vesicles demonstrate interesting pH-dependent fluorescence properties.