Photomechanical degrafting of azo-functionalized poly(methacrylic acid) (PMAA) brushes

J Phys Chem B. 2011 Sep 8;115(35):10431-8. doi: 10.1021/jp2041229. Epub 2011 Aug 17.

Abstract

We report on the preparation and characterization of photosensitive polymer brushes. The brushes are synthesized through polymer analogous attachment of azo-benzene groups to surface-attached poly(methacrylic acid) (PMAA) chains. The topography of the photosensitive brushes shows a strong reaction upon irradiation with UV light. While homogeneous illumination leaves the polymer topography unchanged, irradiation of the samples with interference patterns with periodically varying light intensity leads to the formation of surface relief gratings (SRG). The height of the stripes of the grating can be controlled by adjusting the irradiation time. The SRG pattern can be erased through solvent treatment when the periodicity of the stripe pattern is less than the length of the fully stretched polymer chains. In the opposite case, photomechanical scission of receding polymer chains is observed during SRG formation, and the inscribed patterns are permanent.