Resonantly interacting fermions in a box

Phys Rev Lett. 2011 Jun 10;106(23):235303. doi: 10.1103/PhysRevLett.106.235303. Epub 2011 Jun 10.

Abstract

We use two fundamental theoretical frameworks to study the finite-size (shell) properties of the unitary gas in a periodic box: (1) an ab initio quantum Monte Carlo (QMC) calculation for boxes containing 4 to 130 particles provides a precise and complete characterization of the finite-size behavior, and (2) a new density functional theory (DFT) fully encapsulates these effects. The DFT predicts vanishing shell structure for systems comprising more than 50 particles, and allows us to extrapolate the QMC results to the thermodynamic limit, providing the tightest bound to date on the ground-state energy of the unitary gas: ξ(S)≤0.383(1). We also apply the new functional to few-particle harmonically trapped systems, comparing with previous calculations.