Sequential processing: control of nanomorphology in bulk heterojunction solar cells

Nano Lett. 2011 Aug 10;11(8):3163-8. doi: 10.1021/nl202320r. Epub 2011 Jul 22.

Abstract

Bulk heterojunction organic photovoltaic devices based on poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C(70) butyric acid methyl ester (PC(70)BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC(70)BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC(70)BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC(70)BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.